A model of pedestrian delay at unsignalized intersections in urban networks

Delay is an important performance measure for pedestrian crossings considering their interactions with other road users. This study provides an improved analytical model to mathematically estimate pedestrian delay using renewal theory, which considers driver yielding and vehicle platooning. A generalized model is first provided to accommodate different traffic flow and driver behavior assumptions. Then the proposed model is developed on the basis of a mixture of free traffic and platooned traffic with consideration of driver yielding behaviors to better replicate field conditions in an urban setting. A second application using the Highway Capacity Manual (HCM) 2010 assumptions is also derived to compare it to the HCM 2010 model. Lastly, field data were collected and used for validation from two locations: Gainesville, FL and Washington, D.C. A simulation via MATLAB is performed to evaluate the model results for a variety of cases. The comparisons to the field data as well as the simulation confirm the applicability and accuracy of the proposed model. It is also found that the current HCM 2010 model overestimates the pedestrian delay compared with field data.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01639064
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 15 2017 2:01PM