Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine
EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation. This paper presents the results from implementation of cEGR and CDA on an engine capable of Atkinson cycle operation.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01487191
-
Supplemental Notes:
- Abstract reprinted with permission of SAE International.
-
Authors:
- Schenk, Charles
- Dekraker, Paul
-
Conference:
- WCX™ 17: SAE World Congress Experience
- Location: Detroit Michigan, United States
- Date: 2017-4-4 to 2017-4-6
- Publication Date: 2017-3-28
Language
- English
Media Info
- Media Type: Web
- Features: References;
-
Serial:
- SAE Technical Paper
- Publisher: Society of Automotive Engineers (SAE)
- ISSN: 0148-7191
- EISSN: 2688-3627
- Serial URL: http://papers.sae.org/
Subject/Index Terms
- TRT Terms: Engine cylinders; Engines; Environmental policy; Exhaust gas recirculation; Fuel consumption; Greenhouse gases
- Subject Areas: Energy; Environment; Highways; Vehicles and Equipment;
Filing Info
- Accession Number: 01676455
- Record Type: Publication
- Source Agency: SAE International
- Report/Paper Numbers: 2017-01-1016
- Files: TRIS, SAE
- Created Date: Jul 26 2018 2:39PM