A robust optimization approach for dynamic traffic signal control with emission considerations

The authors consider an analytical signal control problem on a signalized network whose traffic flow dynamic is described by the Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956). This problem explicitly addresses traffic-derived emissions as constraints or objectives. The authors seek to tackle this problem using a mixed integer mathematical programming approach. Such class of problems, which the authors call LWR-Emission (LWR-E), has been analyzed before to certain extent. Since mixed integer programs are practically efficient to solve in many cases (Bertsimas et al., 2011b), the mere fact of having integer variables is not the most significant challenge to solving LWR-E problems; rather, it is the presence of the potentially nonlinear and nonconvex emission-related constraints/objectives that render the program computationally expensive. To address this computational challenge, the authors proposed a novel reformulation of the LWR-E problem as a mixed integer linear program (MILP). This approach relies on the existence of a statistically valid macroscopic relationship between the aggregate emission rate and the vehicle occupancy on the same link. This relationship is approximated with certain functional forms and the associated uncertainties are handled explicitly using robust optimization (RO) techniques. The RO allows emissions-related constraints and/or objectives to be reformulated as linear forms under mild conditions. To further reduce the computational cost, the authors employ a link-based LWR model to describe traffic dynamics with the benefit of fewer (integer) variables and less potential traffic holding. The proposed MILP explicitly captures vehicle spillback, avoids traffic holding, and simultaneously minimizes travel delay and addresses emission-related concerns.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01611422
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Sep 2 2016 8:51AM