Influence of nozzle hole diameter and orifice diameter on dme spray to get the similar heat value with diesel spray using the constant volume chamber

Low heating value (LHV) of di-methyl ether (DME) is lower than that of diesel. To get the similar heat value with diesel from the diesel engine operation, single injection quantity of DME should be increased. This investigation was tried to increase the injection quantity of DME by the modified diesel injector and investigated the penetration length and spray angle of DME spray. DME was injected by using three-type modified diesel injectors those nozzle-hole diameters (Injector 1: 1.66 mm, Injector 2 and 3: 0.25 mm) and orifice diameters were different (Injector 1 and 2: 0.6 mm, Injector 3: 1 mm). Spray characteristics of DME was investigated with a various ambient pressures (2.5, 5.0 MPa) in the constant volume chamber and a fuel was injected by varied injection pressure from 35 to 70 MPa by interval of 5 MPa using a DME common rail fuel injection system. The result shows that DME injection quantity by Injector 3 was 1.69 ~ 2.02 times larger than that of diesel injection quantity by Injector 1. In this case, DME spray got the similar heat value compared with diesel spray. The penetration speed of DME spray by Injector 3 was the fastest, thus when the spray development was end, the penetration length of DME spray by Injector 3 was the longest compared with the other cases. In case of the spray angle, Injector 2 and 3 had the similar spray angle and these were larger than that of diesel and DME sprays by Injector 1. As the result, Injector 3 was the solution for how to solve the low heating value of DME.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01608741
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Aug 2 2016 9:28AM