Novel Coordinated Algorithm for Traction Control System on Split Friction and Slope Road

A Traction Control System (TCS) is used to avoid excessive wheel-slip via adjusting active brake pressure and engine torque when vehicle starts fiercely. The split friction and slope of the road are complicated conditions for TCS. Once operated under these conditions, the traction control performance of the vehicle might be deteriorated and the vehicle might lack drive capability or lose lateral stability, if the regulated active brake pressure and engine torque can’t match up promptly and effectively. In order to solve this problem, a novel coordinated algorithm for TCS is brought forward. Firstly, two brake controllers, including a basic controller based on the friction difference between the two drive wheels for compensating this difference and a fuzzy logic controller for assisting the engine torque controller to adjust wheel-slip, are presented for brake control together. And then two engine torque controllers, containing a basic proportional integral derivative (PID) controller for wheel-slip control and a fuzzy logic controller for compensating torque needed by the road slope, are built for engine torque control together. Due to the simultaneous and accurate coordination of the two regulated variables the controlled vehicle can start smoothly. The vehicle test and simulation results on various road conditions have testified that the proposed method is effective and robust.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01605999
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 30 2016 12:08PM