Long-term structural health monitoring of the Cleddau bridge: evaluation of quasi-static temperature effects on bearing movements

This paper illustrates how long-term measurements can be analysed to understand bridge behaviour under changing environmental conditions and how the developed understanding can help explain the performance of its critical components. Measurements from the Cleddau bridge, a structure that has been continuously monitored for more than two years, are used to investigate thermal effects in steel box-girder bridges and, in particular, their bearings. Observed temperature distributions are very different to the recommended distributions in design codes (BS EN 1991-5: 2003). These temperature distributions create plan bending of the box girder, which in turn impose forces at the bearings that have contributed to its wear. This paper investigates bearing movements of the bridge using numerical models, and estimates the resulting forces at the supports. A physics-based model of the bridge is created to which temperature distributions inferred from in situ measurements are supplied as input. Model predictions are validated against measured deformations at the bearings. Subsequently the model is used to predict forces at the bearings due to plan bending and bearing locking. Results quantify the impact that thermal effects have on the performance of the bearings. They also highlight the significance of considering a range of temperature distribution scenarios that go beyond those given in the design codes in order to reliably evaluate thermal effects at the design stage.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01603539
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 14 2016 3:01PM