Fe-doped epitaxial YBCO films prepared by chemical solution deposition

YBa2Cu3O7-δ (YBCO)-coated conductors have wide-ranging potential in large-scale applications such as superconducting maglev trains and superconducting electric cables, but low current carrying capability restrains the practical application of YBCO-coated conductors at high temperatures and high magnetic fields. It is crucial to develop YBCO-coated conductors with high critical current density. In this paper, epitaxial, dense, smooth, and crack-free Fe-doped YBCO films were prepared on a LaAlO3 single crystal substrate via a fluorine-free polymer-assisted metal organic deposition method. The effects of the dilute Fe doping on microstructure and superconducting character of YBCO films were investigated. The critical temperature for superconducting of the Fe-doped YBCO films decreases slightly. However, the in-field critical current density of YBCO films improves with dilute Fe doping of amounts less than x = 0.005, compared to the pure YBCO film. Therefore, the current carrying capability of YBCO film can improve by doping with appropriate amounts of Fe. This means that dilute Fe doping in YBCO films may be a feasible way to prepare high-performance coated conductors.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01602083
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 24 2016 10:39AM