Comparative study on mode split discrete choice models

Discrete choice model acts as one of the most important tools for studies involving mode split in the context of transport demand forecast. As different types of discrete choice models display their merits and restrictions diversely, how to properly select the specific type among discrete choice models for realistic application still remains to be a tough problem. In this article, five typical discrete choice models for transport mode split are, respectively, discussed, which includes multinomial logit model, nested logit model (NL), heteroscedastic extreme value model, multinominal probit model and mixed multinomial logit model (MMNL). The theoretical basis and application attributes of these five models are especially analysed with great attention, and they are also applied to a realistic intercity case of mode split forecast, which results indicating that NL model does well in accommodating similarity and heterogeneity across alternatives, while MMNL model serves as the most effective method for mode choice prediction since it shows the highest reliability with the least significant prediction errors and even outperforms the other four models in solving the heterogeneity and similarity problems. This study indicates that conclusions derived from a single discrete choice model are not reliable, and it is better to choose the proper model based on its characteristics.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01602068
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 24 2016 10:39AM