Evaluation of x-ray computed tomography and finite element models for fatigue experimental hot mix asphalt characterization

Fatigue cracking is one of the major distresses of surface hot mix asphalt (HMA) pavement that shorten pavement service life. Under typical Canadian weather conditions, fatigue distress requires frequent and high-cost maintenance and is therefore always a key concern for pavement construction and design engineers. The primary focus of this thesis was the development of an advanced understanding of the mechanisms underlying fatigue resistance in surface HMA materials. The research objectives have been achieved through extensive experimental evaluation, advanced image-based characterization techniques, and three-dimensional (3D) image-based microstructural finite element (FE) modelling. The findings of this study can therefore be considered a guide for the development of HMA that exhibits superior fatigue performance for use in pavement designs that might lead to longer-lasting pavements and enhanced performance. The experimental work involved an evaluation of the sensitivity of the fatigue resistance of surface HMA mixes to three primary design variables. Aggregate type, binder type, and binder content as well as their interaction have been quantified with respect to their effects on HMA fatigue life, rutting resistance, and stiffness. The objective was to optimize the design by extending fatigue performance while reducing the confounded negative effect on rutting resistance. Two aggregate types were used in the evaluation: Superpave SP12.5 and high friction SP12.5FC2. Two performance graded binders (PG 64-28) were also employed: a modified binder (PG Plus) that meets Ontario Laboratory Standards (LS) specifications and an unmodified binder at two binder levels (optimum and optimum plus 0.5 %).


  • English

Media Info

  • Pagination: 1 file

Subject/Index Terms

Filing Info

  • Accession Number: 01599070
  • Record Type: Publication
  • Source Agency: ARRB
  • Files: ATRI
  • Created Date: May 18 2016 9:27AM