Mechanistic-based characterisation of fatigue resistance of alternative mix designs

The results evidenced how effective it is to replace the conventional unmodified 60-70 Pen bitumen with polymer-modified PG76-10 bitumen for pavements in Qatar and other countries in the region with similar climatic conditions. In addition, the results showed that the use of perpetual pavement structures is a viable option economically and that they are much more accommodating of increase in traffic loading, without causing excessive damage, than conventional pavement structures. The study also concentrated on the assessment of the long-term performance of different full-scale perpetual trial sections by conducting several field tests. The field performance evaluation results showed slightly low resistance to rutting, high IRI values, to some extent, and low stiffness during summertime when the temperature is high. These distresses and deteriorations are expected given the huge traffic loading and the big difference in temperature between seasons in Qatar. The traditional methods to interpret fatigue tests data are not sufficient to characterise and evaluate mixtures against fatigue damage. Therefore, two advanced fatigue characterisation approaches were performed on the raw data obtained from the fatigue test of specimens prepared from different mixtures. The analysis of the fatigue tests focused on calculating the dissipated energy (DE) and obtaining damage characteristics curves following a comprehensive viscoelastic continuum damage (VECD) approach. In conclusion, it is clear that the fatigue life results of the probabilistic analysis approach were much more consistent and reliable than those of the deterministic analysis approach. This probabilistic approach coupled with VECD results is very practical and useful for engineers and will be beneficial to predict fatigue cracking resistance of asphalt mixtures in the field.


  • English

Media Info

  • Pagination: 1 file

Subject/Index Terms

Filing Info

  • Accession Number: 01596286
  • Record Type: Publication
  • Source Agency: ARRB
  • Files: ATRI
  • Created Date: Apr 20 2016 1:55PM