Driver Distraction Detection Using Semi-Supervised Machine Learning

Real-time driver distraction detection is the core to many distraction countermeasures and fundamental for constructing a driver-centered driver assistance system. While data-driven methods demonstrate promising detection performance, a particular challenge is how to reduce the considerable cost for collecting labeled data. This paper explored semi-supervised methods for driver distraction detection in real driving conditions to alleviate the cost of labeling training data. Laplacian support vector machine and semi-supervised extreme learning machine were evaluated using eye and head movements to classify two driver states: attentive and cognitively distracted. With the additional unlabeled data, the semi-supervised learning methods improved the detection performance by 0.0245, on average, over all subjects, as compared with the traditional supervised methods. As unlabeled training data can be collected from drivers' naturalistic driving records with little extra resource, semi-supervised methods, which utilize both labeled and unlabeled data, can enhance the efficiency of model development in terms of time and cost.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01596624
  • Record Type: Publication
  • Files: TLIB, TRIS
  • Created Date: Mar 29 2016 9:21AM