Nailed Connection Behavior in Light-Frame Wood Shear Walls with an Intermediate Layer of Insulation
The shear strength and stiffness of light-frame wood shear walls is highly dependent on the behavior of their individual nailed connections. Eighty-four nailed connection specimens were tested under shear loading to determine the effect of including rigid insulation as an intermediate material between the sheathing and framing elements in a light-frame wood shear wall. Each specimen contained common 10d or 16d nails, 15.9 mm oriented strandboard sheathing, spruce-pine-fir lumber, and rigid insulation in varied thicknesses between 0 and 38.1 mm. From the load-deformation results, maximum load, yield load, and stiffness were assessed using curve-fitting and yield-point determination methods. The results indicate that, as the insulation thickness increases, the connection strength and stiffness both exhibit a steep reduction. In addition, nonlinear two-dimensional (2D) finite-element models of the same nailed connections were developed. These models showed good correlation with experimental data and served to confirm that the decline in strength and stiffness observed in the tests is due to the introduction of the insulation.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/07339445
-
Supplemental Notes:
- © 2016 American Society of Civil Engineers.
-
Authors:
- Plesnik, Tomas
- Erochko, Jeffrey
- Doudak, Ghasan
- Publication Date: 2016-7
Language
- English
Media Info
- Media Type: Web
- Features: References;
- Pagination: 04016045
-
Serial:
- Journal of Structural Engineering
- Volume: 142
- Issue Number: 7
- Publisher: American Society of Civil Engineers
- ISSN: 0733-9445
- Serial URL: http://ascelibrary.org/loi/jsendh
Subject/Index Terms
- TRT Terms: Insulation systems; Nails; Shear strength; Shear walls; Structural connection; Wood structures
- Subject Areas: Bridges and other structures; Design; Highways;
Filing Info
- Accession Number: 01596911
- Record Type: Publication
- Files: TRIS, ASCE
- Created Date: Mar 18 2016 3:03PM