Accident prediction model for public highway-rail grade crossings
Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/00014575
-
Supplemental Notes:
- Abstract reprinted with permission of Elsevier.
-
Authors:
- Lu, Pan
- Tolliver, Denver
- Publication Date: 2016-5
Language
- English
Media Info
- Media Type: Web
- Features: Appendices; Figures; References; Tables;
- Pagination: pp 73-81
-
Serial:
- Accident Analysis & Prevention
- Volume: 90
- Publisher: Elsevier
- ISSN: 0001-4575
- Serial URL: http://www.sciencedirect.com/science/journal/00014575
Subject/Index Terms
- TRT Terms: Crash data; Crash risk forecasting; Highway safety; Railroad grade crossings
- Subject Areas: Highways; Safety and Human Factors;
Filing Info
- Accession Number: 01594167
- Record Type: Publication
- Files: TRIS
- Created Date: Mar 14 2016 9:12AM