Using Delayed Observations for Long-Term Vehicle Tracking in Large Environments

The tracking of vehicles over large areas with limited position observations is of significant importance in many industrial applications. This paper presents algorithms for long-term vehicle motion estimation based on a vehicle motion model that incorporates the properties of the working environment and information collected by other mobile agents and fixed infrastructure collection points. The prediction algorithm provides long-term estimates of vehicle positions using speed and timing profiles built for a particular environment and considering the probability of a vehicle stopping. A limited number of data collection points distributed around the field are used to update the estimates, with negative information (no communication) also used to improve the prediction. This paper introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates to be relayed among vehicles and finally conveyed to the collection point for an improved position estimate. Positive and negative communication information is incorporated into the fusion stage, and a particle filter is used to incorporate the delayed observations harvested from vehicles in the field to improve the position estimates. The contributions of this work enable the optimization of fleet scheduling using discrete observations. Experimental results from a typical large-scale mining operation are presented to validate the algorithms.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01539293
  • Record Type: Publication
  • Files: TLIB, TRIS
  • Created Date: Sep 9 2014 3:27PM