Multimodal injury risk analysis of road users at signalized and non-signalized intersections

This paper proposes a multimodal approach to study safety at intersections by simultaneously analysing the safety and flow outcomes for both motorized and non-motorized traffic. This study uses an extensive inventory of signalized and non-signalized intersections on the island of Montreal, Quebec, Canada, containing disaggregate motor-vehicle, cyclist and pedestrian flows, injury data, geometric design, traffic control and built environment characteristics in the vicinity of each intersection. Bayesian multivariate Poisson models are used to analyze the injury and traffic flow outcomes and to develop safety performance functions for each mode at both facilities. After model calibration, contributing injury frequency factors are identified. Injury frequency and injury risk measures are then generated to carry out a comparative study to identify which mode is at greatest risk at intersections in Montreal. Among other results, this study identified the significant effect that motor-vehicle traffic imposes on cyclist and pedestrian injury occurrence. Motor-vehicle traffic is the main risk determinant for all injury and intersection types. This highlights the need for safety improvements for cyclists and pedestrians who are, on average, at 14 and12 times greater risk than motorists, respectively, at signalized intersections. Aside from exposure measures, this work also identifies some geometric design and built environment characteristics affecting injury occurrence for cyclists, pedestrians and motor-vehicle occupants.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01535925
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 28 2014 11:43AM