The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. U.S.-specific life-cycle greenhouse gas (GHG) emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each component. Emissions from activities at the end of life of equipment and infrastructure are not included, as these activities have previously been shown to contribute negligibly to life-cycle emissions. Life-cycle transportation mode GHG emission factors per tonne-kilometer (t-km) are presented for long distance pipelines (5-20 g CO₂-e/t-km), ocean tankers (5-17 g/t-km), fuel-carrying barges (31 g/t-km), fuel-carrying unit trains (25 g/t-km), tanker trucks (140-180 g/t-km), and bale-transporting flatbed trucks (200 g/t-km). Life-cycle emission factors are also presented per tonne of material throughput for several types of agricultural equipment (600-19,000 g CO₂-e/t handled), fuel conversion facilities (9,000-98,000 g/t), fuel storage and dispensing facilities (2,000-12,000 g/t), and the portion of passenger vehicle operations dedicated to refueling errands (2,000-200,000 g/t). The emissions intensity ranges reported for specific transportation modes are largely due to the greater energy efficiency of larger vehicles and pipelines, and the emissions intensity ranges within stationary storage and handling equipment is often due to differences in utilization of capital equipment and/or material losses during storage and handling activities. Consistent with existing literature, the contribution of non-operation stages to life-cycle GHG emissions ranges from 20% to 40% for most of the components modeled. Criteria air pollutant (NOx, PM2.5, SOx, VOC, CO) emission factors are also presented for the operation stage (e.g., tailpipe only) of each transportation mode.


  • English

Media Info

  • Media Type: Digital/other
  • Features: Appendices; Figures; References; Tables;
  • Pagination: 283p

Subject/Index Terms

Filing Info

  • Accession Number: 01530935
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 3 2014 10:20AM