Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages

This paper describes a series of extensive and unique full-scale measurements of the slipstreams of trains of various types that were carried out as part of the EU-sponsored AeroTRAIN project, together with the analysis of the experimental data. These experiments were carried out with the fundamental aim of seeking to reduce the complexity of the current technical specifications for interoperability (TSI) testing methodology. Experimental sites in Spain and Germany were used, for a range of different train types – high-speed single-unit trains, high-speed double-unit trains, conventional passenger units and locomotive/coach combinations. The data that was obtained was supplemented by other data from previous projects. The analysis primarily involved a study of the ensemble averages of the slipstream velocities, measured both at trackside and above platforms. The differences between the flows around different train types were elucidated, and the effect of platforms on slipstream behaviour described. A brief analysis of the effects of crosswinds on slipstream behaviour was also carried out. Through a detailed analysis of slipstream velocity components, the detailed nature of the flow around the nose and in the near wake of the train was investigated, again revealing differences in flow pattern between different trains. Significant similarity in the far wake flows was revealed. These fundamental results form the basis for the detailed discussion of the proposed TSI methodology that will be presented in Part 2 of this paper. Overall the results enable the nature of the flow field around trains to be understood in far greater detail than before, and also allow the developments of a revised TSI methodology which is more efficient than current practice.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01528440
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 6 2014 11:10AM