Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection

In this study, some different approaches were designed, implemented, and evaluated to perform multi-criteria route planning by considering a driver’s preferences in multi-criteria route selection. At first, by using a designed neuro-fuzzy toolbox, the driver’s preferences in multi-criteria route selection such as the preferred criteria in route selection, the number of route-rating classes, and the routes with the same rate were received. Next, to learn the driver’s preferences in multi-criteria route selection and to classify any route based on these preferences, a methodology was proposed using a locally linear neuro-fuzzy model (LLNFM) trained with an incremental tree based learning algorithm. In this regard, the proposed LLNFM-based methodology reached better results for running-times, as well as root mean square error (RMSE) estimations in learning and testing processes of training/checking data-set in comparison with those of the proposed adaptive neuro-fuzzy inference system (ANFIS) based methodology. Finally, the trained LLNFM-based methodology was utilized to plan and predict a driver’s preferred routes by classifying Pareto-optimal routes obtained by running the modified invasive weed optimization (IWO) algorithm between an origin and a destination of a real urban transportation network based on the driver’s preferences in multi-criteria route selection.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01522031
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 2 2014 1:37PM