Relevance of Hydrophobic and Oleophobic Properties of Antigraffiti Systems on Their Cleaning Efficiency on Concrete and Stone Surfaces

The problem of graffiti is not entirely restricted to urban areas, but also appears frequently in rural communities and along traffic infrastructure. Besides its aesthetic and societal effects, graffiti cause considerable removal costs and subsequent costs for repairing damages caused by improper graffiti removal. Over the last two decades, strategies have been developed to combat graffiti in the built environment, including the development of protective measures in the form of antigraffiti systems (AGSs). Antigraffiti systems promise to be affordable and easily applicable for a wide range of substrates, and many products have already been on the market for many years. In practice, however, successful application of AGS and removal of graffiti depend on many factors in which the type of coating and condition of the substrate play critical roles. The optimal environmental goal is to use AGS without any cleaning chemicals except for pure water. Available studies on the behavior of the same AGS on various substrates can show completely different results concerning the cleaning efficacy and the durability of the AGS under different climatic conditions. The question of which properties of an AGS are most essential for its efficiency has still not been fully investigated. The goal of this study was to investigate cleaning efficacy in conjunction with hydrophobic and oleophobic properties of the AGS on different substrates. The results showed that hydrophobicity and oleophobicity are important for dense substrates but have a low influence on porous substrates. In this case, cleaning efficiency is majorly determined by the physical properties of the substrates.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01482070
  • Record Type: Publication
  • Files: TRIS, ASCE
  • Created Date: May 14 2013 3:58PM