Development of a comprehensive and flexible forward dynamic powertrain simulation tool for various hybrid electric vehicle architectures

This paper presents a comprehensive and flexible forward dynamic powertrain simulation tool, WARwick Powertrain Simulation Tool for ARchitectures 2 (WARPSTAR2), for modelling of conventional internal combustion engine, hybrid, and pure electric vehicles. WARPSTAR2 includes physical powertrain component models and their controllers, a hybrid supervisory controller, the driver, and the environment model. The physical powertrain component models are developed in Dymola, while the component controllers, the hybrid supervisory controllers, and the driver model are realized in MATLAB/Simulink. Thus the power of these two software tools is combined. A generalized fuzzy-logic-based supervisory controller is proposed for all hybrid electric vehicle (HEV) architectures so that all HEVs with different architectures share the same structure of supervisory controller. The generalized formation can be used for the supervisory controllers of different HEV architectures with varied parameter settings, thus facilitating the controller design process. The rule-based supervisory controller is also developed in WARPSTAR2. Simulation is carried out for different HEVs with these two supervisory controllers in the driving cycles. The results of engine and battery power usages with these two supervisory controllers are similar and the differences of predicted engine fuel consumptions between the two supervisory controllers are within 5 per cent.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01366297
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 29 2012 7:14AM