Use of Material Interfaces in DEM to Simulate Soil Fracture Propagation in Mode I Cracking

Mode I fracture is common in geomechanics in desiccation cracking, hydraulic fracture, and pressuremeter testing. The cohesive crack model has been used extensively and successfully in numerical modeling of such fracture in concrete and steel but has not been applied in modeling of soil fracture to the same extent. It is argued that the cohesive crack model may be more appropriate than linear elastic fracture mechanics (LEFM) for soils because it takes into account finite tensile strength and any likely plasticity during fracture. With special reference to the Universal Distinct Element Code (UDEC) computer program, a methodology of using interfaces in the distinct element method (DEM) of analysis to model fracture has been validated herein, and this approach is considered to be useful in geomechanical modeling applications. The methodology is based on the cohesive crack approach and shows how softening laws could be back-calculated from load-displacement curves of test specimens. It has been validated using three geometries: a tension test with a rectangular cross section, a notched three-point bend beam, and a compact tension test. Approximate softening laws for St. Albans clay from Canada are proposed.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01350685
  • Record Type: Publication
  • Files: TRIS, ASCE
  • Created Date: Aug 10 2011 2:15PM