A NEURAL NETWORK APPROACH TO FREEWAY NETWORK TRAFFIC CONTROL

This paper investigates the application of a feedforward neural network approach to freeway network control. A feedforward neural network is trained by optimally adjusting its weights so as to reproduce the optimal control law for a limited number of traffic scenarios. Generalization properties of the neural network are investigated and a discussion of advantages and disadvantages compared with alternative control approaches is provided.

  • Supplemental Notes:
    • Publication Date: 1995 Published By: Pergamon, Oxford
  • Corporate Authors:

    Technische Universitat Munchen. Fachgebiet Verkehrsplanung und Verkehrsplanung

    ,    

    Institut de Recherche des Transports

    Avenue de General Malleret-Joinville, Boite Postale 28
    94 Arcueil,   France 

    UNIVERSITY OF NEWCASTLE UPON TYNE, TRANSPORT OPERATIONS RESEARCH GROUP

    ,    

    Technische Universitat Hamburg-Harburg

    ,   Germany 

    Technische Universiteit Delft

    ,    

    Steierwald Schonharting und Partner

    ,    

    University of California, Irvine

    Institute of Transportation Studies
    4000 Anteater Instruction and Research Building
    Irvine, CA  United States  92697

    University of Southampton. Dept. of Civil and Environmental Engineering

    ,    

    Technische Universitat Munchen. Lehrsthul fur Steuerungs- und Regelungstechnik

    ,    

    Strathclyde (Scotland). Regional Council. Dept. of Roads

    ,    

    Politecnico di Milano. Dipartimento di Sistemi di Trasporto e Movimentazione

    ,    

    Regie autonome des transports parisiens

    ,    

    Tetsudo Sogo Gijutsu Kenkyujo (Japan)

    ,    

    Institut national de recherche en informatique et en automatique (France)

    ,    

    Prometheus (Program)

    ,    

    Universite de technologie de compiegne

    ,    

    University of Alaska, Fairbanks

    Transportation Program
    Fairbanks, AK  United States 

    Chalmers University of Technology, Sweden

    Department of Applied Mechanics/CHARMEC
    Gothenburg,   Sweden 

    Politecnico di Torino. Dipartimento de Elettronica

    ,    

    Chung Yuan ta hsueh

    ,    

    Universita di Genova

    ,   Italy 

    Hsi-an kung lu hsueh yuan. Dept. of Automation

    ,    
  • Authors:
    • Papageorgiou, M
  • Publication Date: 1995

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00786832
  • Record Type: Publication
  • Source Agency: UC Berkeley Transportation Library
  • Files: PATH
  • Created Date: Nov 17 2000 12:00AM