OPTIMIZATION OF ACTIVE AND PASSIVE SUSPENSIONS BASED ON A FULL CAR MODEL
This paper introduces an optimal control design method. This method is applied to the optimum design of active and passive suspension systems. A basic three-dimensional 7-DOF car riding model is considered. The method allows the arbitrary choice of sensors for various state variables to be used for feedback control of each suspension unit. Fully-active, limited-active, passive, and two versions of semi-active systems are studied and compared. The results indicate that the dominant feedback gains that have the most impact on the suspension performance measures are those which are proportional to locally measured signals. In cases when no tire deflection measurements are available there may be a complete coincidence between the behaviour of active systems that use different sets of measured variables. (A) For the covering abstract of the conference see IRRD 875861.
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/isbn/1560916249
-
Corporate Authors:
Society of Automotive Engineers (SAE)
400 Commonwealth Drive
Warrendale, PA United States 15096 -
Authors:
- Elbeheiry, E M
- KARNOPP, D C
- Publication Date: 1995-2
Language
- English
Media Info
- Features: References;
- Pagination: p. 263-74
-
Serial:
- SAE PUBLICATION SP 1074. NEW DEVELOPMENTS IN VEHICLE DYNAMICS, SIMULATION, AND SUSPENSION SYSTEMS (SAE TECHNICAL PAPER 951063)
- Publisher: Society of Automotive Engineers (SAE)
Subject/Index Terms
- TRT Terms: Automobiles; Conferences; Control; Design; Mathematical models; Optimization; Suspension systems
- Uncontrolled Terms: Optimum
- ITRD Terms: 1243: Car; 8525: Conference; 3874: Control; 9011: Design (overall design); 6473: Mathematical model; 1329: Suspension (veh); 9080: Three dimensional
- Subject Areas: Design; Vehicles and Equipment;
Filing Info
- Accession Number: 00719831
- Record Type: Publication
- Source Agency: Institute for Road Safety Research, SWOV
- ISBN: 1-56091-624-9
- Files: ITRD
- Created Date: Apr 26 1996 12:00AM