Research on deicing performance of high-elastic/salt-storage asphalt mixture containing rubber particle and self-developed salt-storage filler
Snow and ice on the pavement surfaces in winter seriously threaten the traffic safety. This study prepared high-elastic/salt-storage (HESS) asphalt mixtures containing rubber particles (RP) and self-developed salt-storage fillers to improve deicing performance in various aspects. Specifically, the RP was incorporated into the asphalt mixture by replacing 1 %, 2 %, and 3 % of fine aggregate by mass and the self-developed salt-storage filler was incorporated into the asphalt mixture to replace 25 %, 50 %, and 75 % of the mineral filler by equal volume. Hydrated lime was used as a mineral filler to enhance the asphalt mixtures’ water damage resistance. The pavement performance of HESS asphalt mixtures was first studied. The pull-out and fall ball impact tests were designed to investigate the composite deicing effect of RP and salt-storage filler on the asphalt mixtures. A self-designed rainfall simulation test was used to assess the long-term deicing performance of HESS asphalt mixtures. Results showed that the incorporation of RP improves the high-temperature stability and low-temperature crack resistance of the mixtures, but negatively affects their water damage resistance. The RP content should not exceed 3 % to guarantee water damage resistance. Due to combining effects RP and salt-storage fillers, the deicing performance of HESS asphalt mixtures has been improved by 15.9 % and 10.6 % as compared to the addition of RP and salt-storage fillers separately. It is recommended to replace the fine aggregates with the RP at content of 1.5–3 % by mass and 60–75 % mineral filler with the salt-storage filler by volume.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/09500618
-
Supplemental Notes:
- © 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. Abstract reprinted with permission of Elsevier.
-
Authors:
- Zou, Guilian
- Chen, Qi
-
0009-0009-8193-2697
- Jiao, Youqing
- Yuan, Yan
- Zhang, Yuan
-
0000-0003-0115-0599
- Yu, Jiangmiao
- Publication Date: 2024-10-25
Language
- English
Media Info
- Media Type: Web
- Features: References;
- Pagination: 138303
-
Serial:
- Construction and Building Materials
- Volume: 449
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0950-0618
- Serial URL: http://www.sciencedirect.com/science/journal/09500618?sdc=1
Subject/Index Terms
- TRT Terms: Asphalt mixtures; Deicing; Deicing chemicals; Fillers (Materials); Rubber; Sodium chloride
- Subject Areas: Highways; Materials; Pavements;
Filing Info
- Accession Number: 01933819
- Record Type: Publication
- Files: TRIS
- Created Date: Oct 16 2024 9:12AM