Understanding trust calibration in automated driving: the effect of time, personality, and system warning design

Under the human-automation codriving future, dynamic trust should be considered. This paper explored how trust changes over time and how multiple factors (time, trust propensity, neuroticism, and takeover warning design) calibrate trust together. The authors launched two driving simulator experiments to measure drivers’ trust before, during, and after the experiment under takeover scenarios. The results showed that trust in automation increased during short-term interactions and dropped after four months, which is still higher than pre-experiment trust. Initial trust and trust propensity had a stable impact on trust. Drivers trusted the system more with the two-stage (MR + TOR) warning design than the one-stage (TOR). Neuroticism had a significant effect on the countdown compared with the content warning.Practitioner summary: The results provide new data and knowledge for trust calibration in the takeover scenario. The findings can help design a more reasonable automated driving system in long-term human-automation interactions.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01910534
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 29 2024 3:54PM