Robust Accurate Lane Detection and Tracking for Automated Rubber-Tired Gantries in a Container Terminal

Lane detection and tracking technique is the autonomous driving basis for Rubber-Tired Gantries (RTGs), vital to the automation and intelligence updating of man-driven container terminals. However, the existing lane detection methods developed for common road scenarios cannot meet the high-precision and robust all-weather requirements of RTG autonomous driving. In this article, the authors propose an Adaptive Edge-based Lane Detection and Tracking method considering RTG lanes’ characteristics in this paper. First, the candidate edges of lane lines are detected and paired based on the enhanced gradient features. Next, inverse perspective mapping is employed to search the right edges, followed by an adaptive sliding-window method. Ultimately, they develop an adaptive Kalman filter to track lane lines robustly, detecting confidence weighting by relaxing the constraint of lane line width. The proposed method is tested in an actual container yard, the lane centerline’s average position error is 2.051 pixels, and the detection success rate is close to 100%.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01908050
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 14 2024 9:15AM