An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches

Due to visibility limitations and other factors, the injuries sustained by bicyclists in nighttime vehicle-bicycle crashes tend to be more severe than daytime crashes. This paper seeks to provide insights into this day/night injury severity phenomenon by studying how day/night bicyclist injury severities have changed in crashes that occurred before, during, and after the COVID-19 lock downs. Using data from vehicle-bicycle crashes in Florida State over a three-year period (from 2019 to 2021 inclusive), separate yearly models of bicyclist-injury severities (with possible outcomes of severe injury, minor injury, and no visible injury) were estimated using a random parameters logit approach with possible heterogeneity in the means and variances of random parameters. Likelihood ratio tests were conducted to examine the overall stability of model estimates across the studied years as well as day/night differences, and a comparison of partially constrained and unconstrained temporal modeling approaches is provided. A wide range of variables potentially affecting resulting bicyclist injury severities in vehicle/bicycle crashes was considered including bicyclist and vehicle driver information, vehicle features, roadways and environmental conditions, temporal characteristics, and roadway features. The findings show statistically significant differences between daytime and nighttime before, during and after the COVID-19 pandemic. Out-of-sample simulation results suggest that improving the visibility of bicyclist through mandated reflectivity, improved roadway illumination, undertaking public awareness campaigns relating to nighttime bicyclist safety, and vulnerable road user detection sensors in vehicles can all contribute to substantially improve nighttime bicyclist safety.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01894314
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Sep 25 2023 2:46PM