Developing deterministic and probabilistic prediction models to evaluate high-temperature performance of modified bitumens
This study aims to develop deterministic and probabilistic prediction models for the multiple stress creep and recovery (MSCR) test. For this purpose, crumb rubber, polyphosphoric acid, and styrene–butadiene–styrene bitumen modifiers have been used with different dosages to modify high-temperature performance of PG 58–28 and PG 64–22 base bitumens. The MSCR test has been performed at different temperatures. Deterministic models are developed by the multi-gene genetic programming technique for each modifier individually, and the non-recoverable creep compliance (Jnr) and percent recovery (R) parameters are predicted. The accuracy of deterministic models is suitable and the performance of R models has been better than Jnr models. Furthermore, a comprehensive probabilistic model has been developed by using the logistic regression technique to predict different traffic levels. The accuracy of the probabilistic model is 0.85. The sensitivity analysis has been performed on this model and the effect of changes in the modifier dosage and temperature on the traffic levels have been investigated. Results show that using the probabilistic model, it is possible to find a range of modifier’s dosage in which the traffic level is desired.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/09500618
-
Supplemental Notes:
- © 2023 Elsevier Ltd. All rights reserved. Abstract reprinted with permission of Elsevier.
-
Authors:
- Ehsani, Mehrdad
-
0000-0003-3413-216X
- Hajikarimi, Pouria
-
0000-0001-5621-7274
- Esfandiar, Masoud
- Rahi, Mohammad
- Rasouli, Behzad
- Yousefi, Yousef
- Nejad, Fereidoon Moghadas
- Publication Date: 2023-10-19
Language
- English
Media Info
- Media Type: Web
- Features: References;
- Pagination: 132808
-
Serial:
- Construction and Building Materials
- Volume: 401
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0950-0618
- Serial URL: http://www.sciencedirect.com/science/journal/09500618?sdc=1
Subject/Index Terms
- TRT Terms: Bituminous mixtures; Genetic algorithms; High temperature; Logistic regression analysis; Mechanical relaxation; Predictive models
- Identifier Terms: Multiple Stress Creep Recovery
- Subject Areas: Highways; Materials; Pavements;
Filing Info
- Accession Number: 01893273
- Record Type: Publication
- Files: TRIS
- Created Date: Sep 15 2023 10:27AM