Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels

As electric vehicles (EVs) are developing at a rapid pace, the foreseeable “scrap tide” of EV batteries poses a severe challenge to ecological protection. This article investigates a dual-recycle channel closed-loop supply chain and provides regulatory solutions to retired EV batteries' recycling. Specifically, the authors construct four supervision scenarios: S1 no policy intervention, S2 reward-penalty scheme, S3 deposit-refund scheme, and S4 dual scheme combining S2 and S3. Based on the Stackelberg game and empirical data, all scenarios' recycling performance is evaluated and compared with a view to “society, economy, and environment”. The results revealed: (1) Compared with S1, the recycling rate and carbon reduction rate in S2∼S4 increase by 2.6049%/0.0092%, 4.0379%/0.0285%, and 6.6660%/0.0379%, respectively; (2) The difference between S2 and S3 in recycling performance depends on regulatory intensities, yet the latter places greater burdens on consumers and firms. The S4 presents optimal environmental performance but at the expense of socioeconomic development; (3) As regulatory intensity increases, social welfare rises driven by environmental benefits, then falls due to overburdened supply chain profits, consumer surplus, and policy expenditures; (4) Carbon trading prices and EVs' potential market sizes affect regulatory schemes’ operations. The authors' results contribute to policy-making and managerial practices for EV battery recycling.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01876511
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 23 2023 10:19AM