Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine.A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.Engine trials were conducted to map the operating limits in HCCI and HSACI mode for an engine speed of 1400 1/min as a function of intake air temperature (148-173°C) and relative air-fuel ratio (? = 2.0-3.0). Results show that HSACI extends the lean limit by more than ?? = 0.4 and reduces the minimum required intake temperature by at least 5 K compared to HCCI. Comparative experiments of HCCI and HSACI reveal that HSACI benefits from higher engine load, lower ringing intensity and lower NOx emissions without deteriorating efficiency. Experimental data concerning the occurrence of instable combustion in HCCI and the role of initial heat release in HSACI agree with the trends predicted by the 0D models.


  • English

Media Info

  • Media Type: Web
  • Features: References;
  • Pagination: pp 1679-1698
  • Serial:
    • Volume: 5
    • Issue Number: 5

Subject/Index Terms

Filing Info

  • Accession Number: 01870518
  • Record Type: Publication
  • Source Agency: SAE International
  • Report/Paper Numbers: 2022-32-0027
  • Files: TRIS, SAE
  • Created Date: Jan 23 2023 4:23PM