Model-Reference Reinforcement Learning for Collision-Free Tracking Control of Autonomous Surface Vehicles

This paper presents a novel model-reference reinforcement learning algorithm for the intelligent tracking control of uncertain autonomous surface vehicles with collision avoidance. The proposed control algorithm combines a conventional control method with reinforcement learning to enhance control accuracy and intelligence. In the proposed control design, a nominal system is considered for the design of a baseline tracking controller using a conventional control approach. The nominal system also defines the desired behaviour of uncertain autonomous surface vehicles in an obstacle-free environment. Thanks to reinforcement learning, the overall tracking controller is capable of compensating for model uncertainties and achieving collision avoidance at the same time in environments with obstacles. In comparison to traditional deep reinforcement learning methods, the proposed learning-based control can provide stability guarantees and better sample efficiency. The authors demonstrate the performance of the new algorithm using an example of autonomous surface vehicles.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01885398
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 20 2023 10:17AM