A machine learning approach for propeller design and optimization: Part I
This paper introduces a machine learning approach for optimizing propellers. The method aims to improve the computational cost of optimization by reducing the number of evaluations required to find solutions. This is achieved by directing the search towards design clusters with good performance, i.e. high propulsive efficiency and low cavitation. Three types of clusters are expected. The first cluster constitutes designs with performance of interest, i.e. high efficiency and low cavitation. The second cluster constitutes designs with performance not of interest, i.e. low efficiency and high cavitation. The third cluster constitutes designs whose performance cannot be estimated with the Boundary Element Methods (BEM) that the authors use in this study. In simple cases with single objective optimization to maximize efficiency, these clusters can be identified a-priori with unsupervised classifiers provided that orthogonally independent parameters are used as demonstrated in this paper. For multi-objective constrained optimization, to maximize efficiency and minimize cavitation, for example, supervised classifiers may be required to learn the clusters. Classical design variables such as chordlength, pitch, skew, rake, thickness distribution and camber of hydrofoils cannot be used to identify these clusters because of multicollinearity. Thus, a new orthogonal parametric model is proposed where the parameters are directly derived from the propeller blade mesh. As the blade surface mesh is used as boundary conditions to solve the governing equations, the orthogonal parameters are expected to have a stronger correlation with performance predictions of BEM or Computational Fluid Dynamics (CFD) than classical design variables. The authors demonstrate that design clusters with good performance can be identified with few BEM evaluations. Furthermore, the method synergizes explainable supervised and unsupervised learning to advice search algorithms and quickly guide them to lucrative regions in the design space. However, reducing the cost of optimization results in a trade-off with completeness of the search; this is also investigated in this paper. The method is demonstrated on a simple fully wetted flow case of the benchmark Wageningen B-4 70 propeller with P/D=1.0, as the geometry and open-water curves are readily accessible allowing back of the envelope verification and validation of their results.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01411187
-
Supplemental Notes:
- © 2022 The Author(s). Published by Elsevier Ltd. Abstract reprinted with permission of Elsevier.
-
Authors:
- Doijode, Pranav Sumanth
-
0000-0003-2731-8484
- Hickel, Stefan
- van Terwisga, Tom
- Visser, Klaas
- Publication Date: 2022-7
Language
- English
Media Info
- Media Type: Web
- Features: Figures; References; Tables;
- Pagination: 103178
-
Serial:
- Applied Ocean Research
- Volume: 124
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0141-1187
- Serial URL: https://www.sciencedirect.com/journal/applied-ocean-research
Subject/Index Terms
- TRT Terms: Cavitation (Mechanics); Design; Machine learning; Optimization; Propellers; Propulsion; Ships
- Subject Areas: Data and Information Technology; Design; Marine Transportation;
Filing Info
- Accession Number: 01855733
- Record Type: Publication
- Files: TRIS
- Created Date: Aug 24 2022 3:02PM