A Map Matching-based Method for Electric Vehicle Charging Station Placement at Directional Road Segment Level

This paper proposes a method for electric vehicle charging station (EVCS) placement problem at the directional road segment (DRS) level for large urban road networks, which integrates a multi-criteria decision-making model with a new map matching technique called “segment-wise matching based on MRI”. The charging demand of DRS is estimated based on a novel prediction method which considers the arrival trips and the variation of charging demand for different trip purposes. Traffic attributes, charging demand attributes, and land price are incorporated into the TOPSIS model to determine the optimal EVCS placement. Finally, the proposed method is demonstrated using the road network of Xi'an in China as a case study. The results show the proposed method can be well applied to the EVCS placement problem at the DRS level for large-scale urban road networks. It is found that EVCS installation potentials of road segments approximately follow a normal distribution. The road segments with a high installation potential exhibit regional clustering characteristics due to the level of well-developed land use in the surrounding area. Sensitivity analyses suggest that it is important to include multiple criteria for modeling the EVCS placement problem and that traffic speed and arrival trips are key factors.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01853657
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 31 2022 3:21PM