FRP sheet/jacket system as an alternative method for splicing prestressed-precast concrete piles
Prestressed precast concrete pile (PPCP) is the most common type of pile currently practiced for establishing bridge foundations because it provides for a rapid, economical, and durable method of construction. For various reasons, including unpredictable soil conditions and shipping as well as transportation limitations, it is preferable or imperative to cast PPCPs with shorter lengths and connect them at the site to achieve longer lengths. Accordingly, various splice systems have been implemented over the decades for connecting PPCPs. However, current splice methods have shortcomings that have limited their applications. This study briefly reviews the limitations of the existing pile splices and introduces a novel method for splicing prestressed precast concrete piles. The proposed splice system utilizes Fiber Reinforced Polymer (FRP) sheets to provide the required strength. The performance of the proposed splice system in developing the required capacity has been investigated according to both ACI 318–14 and FDOT Standard Design Specifications. To demonstrate the effectiveness and constructability of the proposed system, the proposed splice has been designed for an 18-inch (457 mm) square PPCP according to a procedure consistent with ACI 440.2R-17. The results show that this system is effective and can meet all the requirements set forward by the design specifications. The major contribution of this study is the development of a new splicing method that is applicable to both unforeseen and preplanned situations, and offers an economical, corrosion-resistant, and rapid alternative advantageous to other available splicing methods. The new splice is especially valuable for unforeseen conditions where other splice systems fail to provide the required capacity. As important as its novelty, the proposed splice can be designed according to well-established and validated design codes making the need for experimental verification trivial.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/22145095
-
Supplemental Notes:
- © 2022 Seyed Saman Khedmatgozar Dolati and Armin Mehrabi. Published by Elsevier Ltd. Abstract reprinted with permission of Elsevier.
-
Authors:
- Khedmatgozar Dolati, Seyed Saman
- Mehrabi, Armin
- Publication Date: 2022-6
Language
- English
Media Info
- Media Type: Web
- Features: Figures; References; Tables;
- Pagination: e00912
-
Serial:
- Case Studies in Construction Materials
- Volume: 16
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 2214-5095
- Serial URL: http://www.sciencedirect.com/science/journal/22145095
Subject/Index Terms
- TRT Terms: Accelerated bridge construction; Bridges; Corrosion resistant materials; Fiber reinforced concrete; Precast concrete; Prestressed concrete; Support piles
- Identifier Terms: Florida Department of Transportation
- Subject Areas: Bridges and other structures; Construction; Highways; Materials;
Filing Info
- Accession Number: 01852050
- Record Type: Publication
- Files: TRIS
- Created Date: Jul 21 2022 11:30AM