On the estimation of optimal state-of-charge trajectory for plug-in hybrid electric buses using trip information

Plug-in hybrid electric buses are a viable solution to increase the fuel economy. In this framework, precise estimation of optimal state-of-charge trajectory along the upcoming driving cycle appears to play a pivotal role in the way to approach the globally optimal fuel economy. This paper aims to conduct a parametric study on the key factors affecting the estimation of optimal state-of-charge trajectory, including trip information availability and trip segment distance, and to provide a guideline for the design and implementation of predictive energy management systems. To accomplish this, the dynamic programming algorithm is employed to obtain the solution of optimal control problem for the sampled driving cycles in a particular bus route. A large database comprising of driving features of the cycles and the optimal solution is developed which then is used to construct a neural network based estimator for obtaining the optimal state-of-charge trajectory. The main results show promising performance of the proposed method with about 76% reduction in the root mean square error of the estimated trajectory comparing to the linear state-of-charge trajectory assumption. Moreover, the robustness of the estimator is verified through simulation and it is observed that appropriate choice of trip segment distance is vital to improve the estimation accuracy, especially in case of uncertain prediction of trip information.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01849235
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 23 2022 9:16AM