Experimental study on transient pressure induced by high-speed train passing through an underground station with adjoining tunnels
Transient pressure variations on train and platform screen door (PSD) surfaces when a high-speed train passed through an underground station and adjoining tunnel were studied using a moving model test device based on the eight-car formation train model. The propagation characteristics of the pressure wave that was induced when the train passed through the station and tunnel at a high speed were discussed, and the effects of the train speed and station ventilation shaft position on the surface pressure distribution of the train and PSDs were analyzed and compared. The results showed that the pressure fluctuation law is different for the train and PSD surfaces, and the peak pressure increases significantly with an increase in the train speed. Ventilation shafts changed the pressure waveform on the surface of the train and PSDs and greatly reduced the peak pressure. A single shaft at the rear end of the platform and a double shaft at the station had the most significant effect on relieving transient pressure on the surface of the train and PSDs, respectively. Compared with the case with no shaft, these two shafts reduced the maximum amplitude pressure variation of the train and PSD surfaces by 46.3% and 67.4%, respectively.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01676105
-
Supplemental Notes:
- © 2022 Elsevier Ltd. All rights reserved. Abstract reprinted with permission of Elsevier.
-
Authors:
- Li, Xiaofang
- Wu, Zaixin
- Yang, Jizhong
- Zhang, Lei
- Zhou, Dan
- Hu, Tianen
- Publication Date: 2022-5
Language
- English
Media Info
- Media Type: Web
- Features: References;
- Pagination: 104984
-
Serial:
- Journal of Wind Engineering & Industrial Aerodynamics
- Volume: 224
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0167-6105
- Serial URL: https://www.sciencedirect.com/journal/journal-of-wind-engineering-and-industrial-aerodynamics
Subject/Index Terms
- TRT Terms: Aerodynamic force; Air pressure; High speed rail; Tunnels; Underground structures
- Subject Areas: Railroads; Vehicles and Equipment;
Filing Info
- Accession Number: 01842214
- Record Type: Publication
- Files: TRIS
- Created Date: Apr 12 2022 10:05AM