Bayesian Learning of Occupancy Grids

Occupancy grids encode for hot spots on a map that is represented by a two dimensional grid of disjoint cells. The problem is to recursively update the probability that each cell in the grid is occupied, based on a sequence of sensor measurements from a moving platform. In this paper, the authors provide a new Bayesian framework for generating these probabilities that does not assume statistical independence between the occupancy state of grid cells. This approach is made analytically tractable through the use of binary asymmetric channel models that capture the errors associated with observing the occupancy state of a grid cell. Binary-valued measurement vectors are the thresholded output of a sensor in a radar, sonar, or other sensory system. They compare the performance of the proposed framework to that of the classical formulation for occupancy grids. The results show that the proposed framework identifies occupancy grids with lower false alarm and miss detection rates, and requires fewer observations of the surrounding area, to generate an accurate estimate of occupancy probabilities when compared to conventional formulations.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01843987
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 25 2022 5:02PM