THE ACCELERATION OF AN AIR CUSHION VEHICLE UNDER THE ACTION OF A PROPULSOR

This paper presents the solution for the motion of an air-cushion vehicle (ACV) starting from rest under the action of a propulsor of given thrust-speed characteristics. The wave resistance is based on linearized potential theory, while the aerodynamic drag components are assumed to be strictly quasi-steady. The problem is treated in two different ways: calculating the wave resistance in a truly unsteady manner, and on the simplified quasi-steady basis. The results show that the shape of the propeller characteristics has only a minor effect on the velocity pattern. However, the effect of overloading the ACV is shown to have crucial effects on its ability to surpass the critical depth hump. In this respect, the simpler quasi-steady calculations lead to unnecessarily pessimistic estimates of the acceleration margin. Under certain circumstances in relatively shallow water, the quasi-steady analysis would suggest that the ACV could not overcome the critical hump, while the more elaborate unsteady calculations show that it has indeed adequate power to reach its final cruising speed.

  • Availability:
  • Corporate Authors:

    Society of Naval Architects and Marine Engineers

    601 Pavonia Avenue
    Jersey City, NJ  United States  07306-2907
  • Authors:
    • Doctors, L J
    • Sharma, S D
  • Publication Date: 1973-6

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00051218
  • Record Type: Publication
  • Source Agency: Society of Naval Architects and Marine Engineers
  • Files: TRIS
  • Created Date: Mar 18 1974 12:00AM