An Effective Fatigue Driving Stress for Failure Prediction of Spot Welds Under Cyclic Combined Loading Conditions
An effective fatigue driving stress is proposed to predict the failure of spot welds under cyclic combined loading conditions. The effective fatigue driving stress is obtained based on the Mises yield criterion in terms of the resultant forces and moments in a plastic collapse analysis of spot welds under complex combined loading conditions as discussed in Lin et al. [1]. The effective fatigue driving stress can be used to correlate the fatigue data of spot welds with consideration of the effects of the sheet thickness, nugget diameter and loading conditions. Experimental results for coach-peel and lap-shear specimens under cyclic loading conditions are used to evaluate the applicability of the effective fatigue driving stress. The experimental results for spot welds in both coach-peel and lap-shear specimens are correlated very well based on the effective fatigue driving stress.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01487191
-
Supplemental Notes:
- Abstract reprinted with permission of SAE International.
-
Authors:
- Lin, S
- Pan, J
-
Conference:
- SAE 2003 World Congress & Exhibition
- Location: Detroit Michigan, United States
- Date: 2003-3-3 to 2003-3-6
- Publication Date: 2001-10-28
Language
- English
Media Info
- Media Type: Web
-
Serial:
- SAE Technical Paper
- Publisher: Society of Automotive Engineers (SAE)
- ISSN: 0148-7191
- EISSN: 2688-3627
- Serial URL: http://papers.sae.org/
Subject/Index Terms
- TRT Terms: Mechanical fatigue; Plastics; Welding
- Subject Areas: Highways; Vehicles and Equipment;
Filing Info
- Accession Number: 01801824
- Record Type: Publication
- Source Agency: SAE International
- Report/Paper Numbers: 2003-01-0696
- Files: TRIS, SAE
- Created Date: Dec 9 2021 10:24AM