Spark advance for optimal efficiency
Most of todays spark-advance controllers operate in open loop but there are several benefits of using feed-back or adaptive schemes based on variables deduced from the cylinder pressure. A systematic study of how different engine conditions change the deduced variables, at optimal ignition timing, is performed. The analysis is performed using a one-zone heat-release model and varying the model parameters. The deduced variables that are studied are: position of the pressure peak, mass fraction burned levels of 30%, 45%, 50%, and 90%, and the pressure ratio. For MBT timing the position for 45% mass fraction burned changed least under a large variety of changes in burn rate. Cycle-to-cycle variations do not have a significant effect and it suffices to evaluate the mean values for the burn rate parameters. The pressure ratio produces values similar to the mass fraction burned and requires no separate treatment.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01487191
-
Supplemental Notes:
- Abstract reprinted with permission of SAE International.
-
Authors:
- Eriksson, Lars
-
Conference:
- International Congress & Exposition
- Location: Detroit Michigan, United States
- Date: 1998-2-23 to 1998-2-26
- Publication Date: 1998-1-23
Language
- English
Media Info
- Media Type: Web
-
Serial:
- SAE Technical Paper
- Publisher: Society of Automotive Engineers (SAE)
- ISSN: 0148-7191
- EISSN: 2688-3627
- Serial URL: http://papers.sae.org/
Subject/Index Terms
- TRT Terms: Engine cylinders; Ignition systems; Pressure; Valve timing
- Subject Areas: Highways; Vehicles and Equipment;
Filing Info
- Accession Number: 01794163
- Record Type: Publication
- Source Agency: SAE International
- Report/Paper Numbers: 1999-01-0548
- Files: TRIS, SAE
- Created Date: Dec 9 2021 10:17AM