Splitting Tensile Strength of Concrete Corroded by Saline Soil

This paper reports the splitting tensile strength of concrete corroded by saline soil. The wet-dry cycle erosion test and splitting tensile test were performed on concrete cubic specimens with six different erosion inspection periods and a solution with the same concentration as the saline soil. The variation of chlorine and sulfate with erosion depth for different erosion inspection periods of corroded concrete, as well as the powder on the concrete within the erosion depth, were analyzed via X-ray diffraction (XRD). Combined with the parallel bar system, corroded concrete specimens were divided into corrosion and non-corrosion parts. Considering the corrosive effect of saline soil on the concrete specimen, the splitting tensile strength model of the corroded concrete in the saline soil area was established and compared with experimental values. The results show that the calculated values of the splitting tensile strength model established herein agreed with experimental values. The splitting tensile strength of concrete gradually decreased with the increasing erosion depth, and the erosion depth gradually deepened with the increasing wet-dry cycle time. This is because CaCO3, ettringite, gypsum, and Friedel’s salts were produced by reacting with concrete in the range of erosion, which resulted in the decrease of splitting tensile strength of concrete.

  • Record URL:
  • Availability:
  • Supplemental Notes:
    • Abstract reprinted with permission from the American Concrete Institute.
  • Authors:
    • Yang, Deqiang
    • Yan, Chongwang
    • Liu, Shuguang
    • Zhang, Ju
    • Hu, Zichao
  • Publication Date: 2020-1


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01737617
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 23 2020 3:58PM