Integrating Dense LiDAR-Camera Road Detection Maps by a Multi-Modal CRF Model

Road detection is an important task in autonomous navigation systems. In this paper, the authors propose a road detection method via a LiDAR-camera fusion strategy to exploit both the range and color information. The whole system consists of three parts. In the LiDAR based part, the authors transform the discrete 3D LiDAR point clouds to continuous 2D LiDAR range images and propose a distance-aware height-difference based scanning approach to get the road estimations quickly. In the camera based part, the authors apply a light-weight transfer learning based road segmentation network. In the LiDAR-camera fusion part, the authors transform the detection results from LiDAR and camera to dense and binary ones to solve the data imbalance problem and fuse them in a multi-modal conditional random field (MM-CRF) framework. Experiments show that the proposed MM-CRF fusion method can operate in real-time and achieve competitive performance compared with the state-of-the-art road detection algorithms on the KITTI-Road benchmark.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01726720
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Dec 26 2019 4:05PM