A connected driver advisory system framework for merging freight trains
This paper proposes an approach to facilitate smooth merging of freight trains into a stream of passenger trains with short headways, to help drivers better control freight trains and avoid red signals. An algorithm architecture is proposed for Driver Advisory Systems (DASs) to compute time/speed advice for freight train drivers. The framework includes four parts: buffer stairway prediction, freight train movement prediction, merging window detection and merging optimization. The basic idea is to predict the traffic state in the merging area regularly and find the feasible merging time window. Proper advice can be presented to freight train drivers and help them to merge smoothly, by comparing the freight train movement to the feasible merging window. The performance of the proposed algorithms is illustrated on examples of merging freight trains in the Meteren and Kijfhoek areas on the Dutch railway network. The experimental results show the efficiency and quality of the proposed algorithms on real world size problems.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/0968090X
-
Supplemental Notes:
- © 2019 Elsevier Ltd. All rights reserved. Abstract reprinted with permission of Elsevier.
-
Authors:
- Wang, Pengling
- Goverde, Rob M P
- van Luipen, Jelle
- Publication Date: 2019-8
Language
- English
Media Info
- Media Type: Web
- Features: Figures; References; Tables;
- Pagination: pp 203-221
-
Serial:
- Transportation Research Part C: Emerging Technologies
- Volume: 105
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0968-090X
- Serial URL: http://www.sciencedirect.com/science/journal/0968090X
Subject/Index Terms
- TRT Terms: Algorithms; Freight trains; Merging traffic; Mobile communication systems; Optimization; Passenger trains; Train operations
- Geographic Terms: Netherlands
- Subject Areas: Freight Transportation; Operations and Traffic Management; Planning and Forecasting; Railroads;
Filing Info
- Accession Number: 01708125
- Record Type: Publication
- Files: TRIS
- Created Date: Jun 20 2019 5:19PM