A Machine Learning Based Approach for Automatic Rebar Detection and Quantification of Deterioration in Concrete Bridge Deck Ground Penetrating Radar B-scan Images
Ground penetrating radar (GPR) is a non-destructive method (NDT) for subsurface object identification. Interpretation of GPR data is often done manually by an engineer, which is a time-intensive task and requires moderate to significant level of training. The authors proposed a novel machine learning based processing for automatic interpretation and quantification of concrete bridge deck GPR B-scan images. The proposed method is based on combination of image processing, machine learning (ML) data classification, data filtering, and spatial pattern analysis for quantification of deterioration in concrete bridge decks. For the first time, the authors introduced a dataset of 4,000 B-scan images cropped from real bridge deck GPR field data, named DECKGPRH1.0. The proposed method is tested on bridge deck GPR data collected from three bridges with different NBI (National Bridge Inventory) ratings. The results presented indicate that by implementing a ML based classifier and a fine tuned filter, the proposed approach provides a robust solution for automatic quantification GPR field data.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/12267988
-
Supplemental Notes:
- © Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2019.
-
Authors:
- Asadi, Pouria
- Gindy, Mayrai
- Alvarez, Marco
- Publication Date: 2019-6
Language
- English
Media Info
- Media Type: Digital/other
- Features: Figures; References;
- Pagination: pp 2618-2627
-
Serial:
- KSCE Journal of Civil Engineering
- Volume: 23
- Issue Number: 6
- Publisher: Korean Society of Civil Engineers
- ISSN: 1226-7988
- EISSN: 1976-3808
- Serial URL: http://link.springer.com/journal/12205
Subject/Index Terms
- TRT Terms: Bridge decks; Concrete bridges; Condition surveys; Detection and identification system applications; Deterioration; Ground penetrating radar; Image analysis; Machine learning; Reinforcing bars
- Subject Areas: Bridges and other structures; Data and Information Technology; Highways; Maintenance and Preservation;
Filing Info
- Accession Number: 01709332
- Record Type: Publication
- Files: TRIS
- Created Date: Jun 27 2019 2:53PM