The effects of takeover request modalities on highly automated car control transitions
This study investigated the influences of takeover request (TOR) modalities on a drivers’ takeover performance after they engaged in non-driving related (NDR) tasks in highly automated driving (HAD). Visual, vibrotactile, and auditory modalities were varied in the design of the experiment under four conditions: no-task, phone conversation, smartphone interaction, and video watching tasks. Driving simulator experiments were conducted to analyze the drivers’ take-over performance by collecting data during the transition time of re-engaging control of the vehicle, the time taken to be on the loop, and time taken to be physically ready to drive. Data were gathered on the perceived usefulness, safety, satisfaction, and effectiveness for each TOR based on a self-reported questionnaire. Takeover and hands-on times varied considerably, as shown by high standard deviation values between modalities, especially for phone conversations and smartphone interaction tasks. Moreover, it was found that participants failed to take over control of the vehicle when they were given visual TORs for phone conversation and smartphone interaction tasks. The perceived safety and satisfaction varied for the NDR task. Results from the statistical analysis showed that the NDR task significantly influenced the takeover time, but there was no significant interaction effect between the TOR modalities and the NDR task. The results could potentially be applied to the design of safe and efficient transitions of highly controlled, automated driving, where drivers are enabled to engage in NDR tasks.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/00014575
-
Supplemental Notes:
- © 2018 Elsevier Ltd. All rights reserved. Abstract reprinted with permission of Elsevier.
-
Authors:
- Yoon, Sol Hee
- Kim, Young Woo
- Ji, Yong Gu
- 0000-0002-0697-2164
- Publication Date: 2019-2
Language
- English
Media Info
- Media Type: Web
- Features: Figures; Photos; References; Tables;
- Pagination: pp 150-158
-
Serial:
- Accident Analysis & Prevention
- Volume: 123
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0001-4575
- Serial URL: http://www.sciencedirect.com/science/journal/00014575
Subject/Index Terms
- TRT Terms: Automated vehicle control; Driver performance; Intelligent vehicles
- Uncontrolled Terms: Nondriving offenses
- Subject Areas: Highways; Safety and Human Factors; Vehicles and Equipment;
Filing Info
- Accession Number: 01690390
- Record Type: Publication
- Files: TRIS
- Created Date: Dec 31 2018 9:05AM