Seasonal variations and in situ assessment of concrete pavement foundation mechanistic properties

In cold climates, pavement surface and foundation layers are subjected to seasonal temperature variation and freeze–thaw cycles. The number and duration of freeze–thaw cycles in the foundation layers can significantly influence the pavement performance. Seasonal variation in foundation layers is accounted for in pavement design by empirically adjusting the foundation layer moduli values. This paper presents results from in situ falling weight deflectometer (FWD) and dynamic cone penetrometer (DCP) tests conducted over a two-year period at five sites in Iowa; at one of these sites, temperatures of the foundation layers were continuously monitored during the testing period. FWD testing was conducted to determine the modulus of subgrade reaction (k) values. DCP testing was conducted to estimate California bearing ratio (CBR) values of the subbase and subgrade. Temperature data were analyzed to determine freezing and thawing periods and frost penetrations. Seasonal variations observed in the foundation mechanistic properties were compared with the assumed design values. Empirical relationships between the different mechanistic properties are explored.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01674856
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 21 2018 9:35AM