Analyzing battery electric vehicle feasibility from taxi travel patterns: The case study of New York City, USA

Electric taxis have the potential to improve urban air quality and save driver’s energy expenditure. Although battery electric vehicles (BEVs) have drawbacks such as the limited range and charging inconvenience, technological progress has been presenting promising potential for electric taxis. Many cities around the world including New York City, USA are taking initiatives to replace gasoline taxis with plug-in electric vehicles. This paper extracts ten variables from the trip data of the New York City yellow taxis to represent their spatial-temporal travel patterns in terms of driver-shift, travel demand and dwell, and examines the implications of these driving patterns on the BEV taxi feasibility. The BEV feasibility of a taxi is quantified as the percentage of occupied trips that can be completed by BEVs of a given driving range during a year. It is found that the currently deployed 280 public charging stations in New York City are far from sufficient to support a large BEV taxi fleet. However, adding merely 372 new charging stations at various locations where taxis frequently dwell can potentially make BEVs with 200- and 300-mile ranges feasible for more than half of the taxi fleet. The results also show that taxis with certain characteristics are more suitable for switching to BEV-200 or BEV-300, such as fewer daily shifts, fewer drivers assigned to the taxi, shorter daily driving distance, fewer daily dwells but longer dwelling time, and higher likelihood to dwell at the borough of Manhattan.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01671956
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 12 2018 4:38PM