Conflict-free railway track assignment at depots

Managing rolling stock with no passengers aboard is a critical component of railway operations. One aspect of managing rolling stock is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with a fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, the authors show that the TAP is NP-hard and present two integer programming models for solving the TAP. They compare both models on a theoretical level. Moreover, to their knowledge, the authors consider the first approach that integrates track lengths along with the three most common types of parking tracks FIFO, LIFO and FREE tracks in a common model. Furthermore, to optimize against uncertainty in the arrival times of the trains the authors extend their models by stochastic and robust modeling techniques. They conclude by giving computational results for both models, observing that they perform well on real timetables.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01674937
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 11 2018 3:40PM