Probabilistic Model for Interaction Aware Planning in Merge Scenarios

Merge scenarios confront drivers with some of the most complicated driving maneuvers in every day driving, requiring anticipatory reasoning of positions of other vehicles, and the own vehicles future trajectory. In congested traffic it might be impossible to merge without cooperation of up-stream vehicles, therefore, it is essential to gauge the effect of the authors' own trajectory when planning a merge maneuver. For an autonomous vehicle to perform a merge maneuver in congested traffic similar capabilities are required. This includes a model describing the future evolution of the scene that allows for optimizing the autonomous vehicle's planned trajectory with respect to risk, comfort, and dynamical limitations. The authors present a probabilistic model that explicitly models interaction between vehicles and allows for evaluating the utility of a large number of candidate trajectories of an autonomous vehicle using a receding horizon approach in order to select an appropriate merge maneuver. The model is an extension of the intelligent driver model and the modeled behavior of other vehicles are adjusted using on-line model parameter estimation in order to give better predictions. The prediction model is evaluated using naturalistic traffic data and the merge maneuver planner is evaluated in simulation.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01644192
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Aug 29 2017 10:07AM