Plastic-Aluminum Composites in Transportation Infrastructure

This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if any, application in modern construction. This technology has considerable potential to add innovative choices to the array of materials currently available in the construction industry. Several new tests were designed and performed on different portions of the beams, including Push-Through and Knit-Line Pull tests, and tensile tests per ASTM D638-10. Results of these tests showed increased strength with an increase of talc filler content and also showed that the addition of a metal deactivator additive to the plastic results in a slight increase in strength. Duration of Load tests were performed per ASTM D7031-04 and none of the beams tested exhibit tertiary creep. The I-beams investigated here use an internal shear connector (deboss), which acts as a mechanical fastener between the aluminum and flange plastic. A numerical finite element model was developed in ABAQUS to better understand the underlying physics of the deboss and was compared with a Push-Through test specimen. Results from the model closely match experimental results and the model can be used to predict within 10% the load per deboss region that can be resisted before the plastic begins to yield and extensively deform. This model can be used for differing deboss geometries and any plastic with known material properties. Overall, the results of this research support potential future research involving a more in-depth investigation of this innovative, new class of material technology for use as a structural material.

  • Record URL:
  • Record URL:
  • Supplemental Notes:
    • This document was sponsored by the U.S. Department of Transportation, University Transportation Centers Program.
  • Corporate Authors:

    Colorado State University, Fort Collins

    Department of Civil and Environmental Engineering
    Fort Collins, CO  United States  80525

    Mountain-Plains Consortium

    North Dakota State University
    Fargo, ND  United States  58108

    Office of the Assistant Secretary for Research and Technology

    University Transportation Centers Program
    Department of Transportation
    Washington, DC  United States  20590
  • Authors:
    • Peterson, Kirsten
    • Heyliger, Paul R
  • Publication Date: 2017-3

Language

  • English

Media Info

  • Media Type: Digital/other
  • Features: Figures; Photos; References; Tables;
  • Pagination: 93p

Subject/Index Terms

Filing Info

  • Accession Number: 01634713
  • Record Type: Publication
  • Report/Paper Numbers: MPC 17-324
  • Files: UTC, NTL, TRIS, ATRI, USDOT
  • Created Date: May 16 2017 9:30AM